Quantitative Recovery of Dihydrogen from Hydrogen Sulphide using the Complexes, $[Pd_2X_2(\mu-dppm)_2] [X = CI, Br, I; dppm = bis(diphenylphosphino)methane]$

Chung-Li Lee,^a Gabor Besenyei,^a Brian R. James,^{*a} David A. Nelson,^{*b} and Michael A. Lilga^b

^a Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Y6 ^b Pacific Northwest Laboratory, Richland, Washington, 99352 U.S.A.

The complexes $[Pd_2X_2(\mu-dppm)_2]$ (1) $[X = CI, Br, I; dppm = bis(diphenylphosphino)methane] abstract sulphur from H₂S under ambient conditions to form <math>[Pd_2X_2(\mu-S)(\mu-dppm)_2]$ (2) and H₂ quantitatively; (2) can be oxidized in stages to μ -SO and μ -SO₂ derivatives, the latter losing SO₂ spontaneously with regeneration of (1).

The interaction of transition metal complexes with H₂S is of interest because of the relevance of the chemistry to metal sulphide hydrodesulphurization catalysts, and the potential use of H_2S as a source of H_2 and organosulphur compounds.^{1,2} We have discovered reaction (1), in which the known^{3,4} metal-metal bonded dimer $[Pd_2Cl_2(\mu-dppm)_2]_2$ (1a) [dppm =bis(diphenylphosphino)methane] in solution at ambient conditions removes the sulphur from H₂S to form the known, bridged sulphide complex³ with concomitant quantitative generation of H₂. The reaction is complete in \sim 15 min on bubbling H_2S through a red CH_2Cl_2 solution of (1a) at 10^{-1} — 10^{-2} M; the brown product (2a) is readily isolated by addition of diethyl ether and is obtained in 90% recrystallized yield. The ¹H and ³¹P $\{$ ¹H $\}$ n.m.r. and electronic spectral data are identical to those reported.³ The evolved H₂ was estimated [>90% per mole of (1a)] by g.c. using a 12 ft Porapak column with CO_2 as an internal standard. Complex (2a) was made previously by treatment of (1a) with elemental sulphur or propylene sulphide.³ The bromo analogue (1b) reacted similarly with H₂S but required overnight treatment; the reaction with the iodo complex⁴ was incomplete after one day.[†] The reverse reaction, liberation of H₂S from the bridged sulphide complexes,^{1,5} does not occur under 1 atm H₂ in refluxing benzene.

To our knowledge, reaction (1) is the first of its kind showing the $1:1 H_2S:H_2$ stoicheiometry at a metal centre, although reaction (2) has been invoked to account for the filling of vacant anionic sites by S in WS₂ lattices.¹ The H₂ produced in reaction (3) is a consequence of the hydride content of the tetrakisphosphine complex,⁶ and the net result is the more usual oxidative addition of H₂S via cleavage of an S-H bond.^{2,6} Kuehn and Taube⁷ did detect H₂ during

 $\dot{\mathbf{P}}$ $\dot{\mathbf{P}}$ = bis(diphenylphosphino)methane (dppm)

decomposition of (3), and tentatively suggested reaction (4), although (3) was not obtained in a pure state.

$$2W^{3+} + H_2S \xrightarrow{\text{anionic site}} 2W^{4+} + S^{2-} + H_2 \qquad (2)$$

$$\operatorname{RuH}_2(\operatorname{PPh}_3)_4 + \operatorname{H}_2S \xrightarrow{-\operatorname{PPh}_3} \operatorname{RuH}(\operatorname{SH})(\operatorname{PPh}_3)_3 + \operatorname{H}_2 \quad (3)$$

$$2[\operatorname{Ru}(\operatorname{NH}_3)_5(\operatorname{H}_2\operatorname{S})]^{2+} \longrightarrow 2[\operatorname{Ru}(\operatorname{NH}_3)_5\operatorname{HS}]^{2+} + \operatorname{H}_2 (4)$$
(3)

In terms of a potential catalytic recovery of H_2 from H_2S , it should be noted that (2a) can be readily reconverted in solution to (1a) via the bridged-SO₂ complex that is formed from (2a) using *m*-chloroperbenzoic acid;³ the violet μ -SO₂ species spontaneously loses SO₂ to regenerate (1a). On testing a variety of reagents for oxidation of (2a) in CH₂Cl₂, we noted that a two-phase reaction using aqueous-methanolic H₂O₂ at 20 °C gives in quantitative yield the orange, bridged sulph-

 $[\]dagger$ N.m.r. spectral data for (2b) and (2c) are very similar to those of (2a).³

oxide complex $[Pd_2Cl_2(\mu-SO)(\mu-dppm)_2]$, which can be oxidized further with the perbenzoic acid to the μ -SO₂ species.

Added in proof. The first crystallographically characterized 'dimetallic sulphoxide', $[Mn_2(CO)_4(\eta^5-C_5H_5)_2(\mu-SO)]$, appeared⁸ after submission of this article.

We thank the U.S. Department of Energy, Morgantown Energy Technology Center, for financial support, and the N.S.E.R.C. for an International Scientific Exchange Award (to G. B.).

Received, 26th February 1985; Com. 261

[‡] This (μ-SO) complex has been characterized by: elemental analysis (including oxygen); i.r. v (SO) 985 cm⁻¹; ¹H n.m.r. δ (25 °C, CD₂Cl₂) 4.68 (1H, dt, J_{HH} 12.6, J_{PH} 12.4 Hz), 3.87 (1H, dt, J_{HH} 12.5, J_{PH} 9.25 Hz), 2.50 (1H, m), and 2.30 (1H, m); ³¹P{¹H} n.m.r. δ (from external 85% H₃PO₄) 26.3, 15.0, and 3.5, -7.7 (AA'BB' pattern). Full details, including X-ray crystallographic and e.s.c.a. (S^{2p}) data, will be presented elsewhere.

- References
- 1 B. C. Gates, J. R. Katzer, and G. C. A. Schuit, 'Chemistry of Catalytic Processes,' McGraw-Hill, New York, 1979, ch. 5.
- 2 A. M. Mueting, P. Boyle, and L. H. Pignolet, *Inorg. Chem.*, 1984, 23, 44, and references therein.
- 3 A. L. Balch, L. S. Benner, and M. M. Olmstead, *Inorg. Chem.*, 1979, **18**, 2996.
- 4 C-Li Lee, B. R. James, D. A. Nelson, and R. T. Hallen, Organometallics, 1984, 3, 1360.
- 5 M. Rakowski Dubois, M. C. VanDerveer, D. L. Dubois, R. C. Haltiwanger, and W. K. Miller, J. Am. Chem. Soc., 1980, 102, 7456.
- 6 K. Osakada, T. Yamamoto, and A. Yamomoto, *Inorg. Chim. Acta*, 1984, **90**, L5.
- 7 G. C. Kuehn and H. Taube, J. Am. Chem. Soc., 1976, 98, 689.
- 8 I.-P. Lorenz, J. Messelhaüser, W. Hiller, and K. Haug, Angew. Chem., Int. Ed. Engl., 1985, 24, 228.